COURSE OUTLINE

(1) GENERAL

SCHOOL	Sciences			
ACADEMIC UNIT	International Graduate Program in Biological Inorganic Chemistry			
LEVEL OF STUDIES	Graduate			
COURSE CODE	3 SEMESTER 1			
COURSE TITLE	Biophysics of pharmaceutical action			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
				5
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Scientific field Special background Specialised general knowledge			
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek / English			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	http://bic.chem.uoi.gr/BIC-En/biophysics-en.html			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

 ${\it Consult}\, {\it Appendix}\, {\it A}$

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After successfully completing the course, descriptive marker 6 of the European Qualifications Framework, students should be able to:

- know basic principles of biophysics of biomolecules and drugs
- know the effect of functional groups and stereochemistry on the biological activity of compounds
- know basic websites in order to find structural biology information
- know types of software and the principles of molecular simulation
- know basic meanings of multiparametric statistical analysis
- be aware of the basic principles governing the Quantitative Relationships Action -Structure (QSAR)

Knowledge

Protein-ligand interactions (molecular binding and molecular dynamics) Thermodynamics of interactions (electron, steric, topological and hydrophobic parameters) QSAR methodology

Skills Molecular modeling Biophysicochemical properties analysis throu Abilities Team work and working independently Learning opportunities for relevant computat	igh multi-parameter methods cional packages			
General Competences Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others			
The general competences that students should Search for, analysis and synthesis of data and technology Working independently Team work Learning opportunities for relevant computat Acquiring hibliographic research publicity ski	d have acquired are: information, with the use of the necessary cional packages			
Acquire the appropriate theoretical base to allow further education at a doctoral level (theoretical and laboratory).				

(3) SYLLABUS

1. Drug design. Introduction: Correlation of parameters (geometry, stereochemistry, bioavailability, toxicity, side effects, interactions).

2. The biophysics of the 3D structure. Structure of proteins and macromolecules. Flexibility, Wrap - Energy Paths.

3. Structural Biology. Experimental techniques (X-ray, NMR)

4. Databases. Protein Data Bank (PDB)

5. Introduction to molecular modeling. Modeling techniques and algorithms.

6. Joint compounds. Theoretical study of joint anticancer compounds and their anti-tumor mechanisms.

7. Equilibrium ratio model. Drug planning

8. Molecular dynamics of biomolecules. Protein-ligand interactions (molecular binding and molecular dynamics). Thermodynamics of interactions (electron, steric, topological and hydrophobic parameters). Force fields.

9. Meanings of multiparametric statistical analysis

10. QSAR - Drug Design. Introduction: Correlation of parameters (geometry, stereochemistry, bioavailability, toxicity, side effects, interactions).

11. Available software (demonstration and / or hands-on training)

12. Project - Presentation

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face
Face-to-face, Distance learning, etc.	

USE OF INFORMATION AND	E-mail, PowerPoint		
COMMUNICATIONS TECHNOLOGY			
Use of ICT in teaching, laboratory education,			
	Activity	Somester workload	
The manner and methods of teaching are	Lectures	65	
described in detail.	Eccures Essay writing	60	
Lectures, seminars, laboratory practice,	Individual study	70	
tutorials, placements, clinical practice, art	nreparation	70	
workshop, interactive teaching, educational	preparation		
visits, project, essay writing, artistic creativity,			
etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-			
directed study according to the principles of the FCTS			
	Course total	195	
STUDENT PERFORMANCE		· · · · ·	
EVALUATION	Student evaluation is done either by presenting to a		
Description of the evaluation procedure	committee of teachers and a public audience or by the		
Language of evaluation methods of	final written examination. The final examination includes: Multiple Choice, short-answer, open-ended, and Problem Solving Questions		
evaluation, summative or conclusive, multiple			
choice questionnaires, short-answer questions,			
open-ended questions, problem solving,			
public presentation. laboratory work, clinical			
examination of patient, art interpretation,			
other			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to			
students.			

(5) ATTACHED BIBLIOGRAPHY

• Molecular Biophysics for the Life Sciences Norma M. Allewell; Linda O. Narhi; Ivan Rayment Springer, 9781461485476

• Computational Biochemistry and Biophysics Oren M. Becker; Alexander D. Mackerell Jr; Benoit Roux; Masakatsu Watanabe Marcel Dekker Ltd, 082470455X

• A Primer on QSAR/QSPR Modeling: Fundamental Concepts (Springer briefs in Molecular Science) Kunal Roy; Supratik Kar; Rudra Narayan Das Springer, 9783319172804

• Statistical Modelling of Molecular Descriptors in QSAR/QSPR Matthias Dehmer; Kurt Varmuza; Danail Bonchev; Frank Emmert-Streib

Wiley-Blackwell, 9783527324347

- Related academic journals:

- Journal of Chemical Information and Modeling
- Journal of Medicinal Chemistry
- RSC Advances
- Journal of Biological Physics
- Biophysical Journal
- Biophysical Chemistry